
Name:_____

MATH 173 Unit Exam 1

Show All Work Justify All Conclusions No Graphing Calculators Allowed

You Got This

1) The graph below shows the relationship between the quantities Q and t

a) Explain why the graph below does not represent ${\it Q}$ as a function of $\it t$

ON THE INTERVAL [1.6,2] EACH INPUT &
HAS MORE THAN I CUTPUT Q

b) Give the concavity of the graph on the intervals $t \in [0,1]$ and $t \in [3,4]$

ON [3,4] THE CURVE IS CONCAVE UP

ON [3,4] THERE IS NO CONCAVITY

2) Does the equation $a^2 + b^2 = 4$ represent b as a function of a? Explain why or why not.

NO IT DOES NOT.

When a=1

1+62=4

b2=3

b= ±13

THERE ARE TWO OUTPUTS INSTEAD

OF ONE,

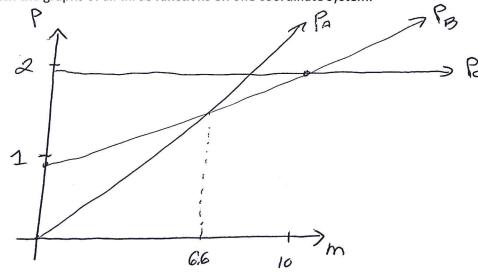
THIS HAPPENS FOR ALL - 2CAL2

Instructor: Grøndahl

3) The table below shows the number of female senators, S, at the beginning of the first session of each Congress, c. Is S a function of c? Explain why or why not.

	0 ,	200			•				
c	98	100	102	104	106	108	110	112	113
S	2	2	2	8	9	14	16	17	20

1ES EVEZT INPUT C HAS

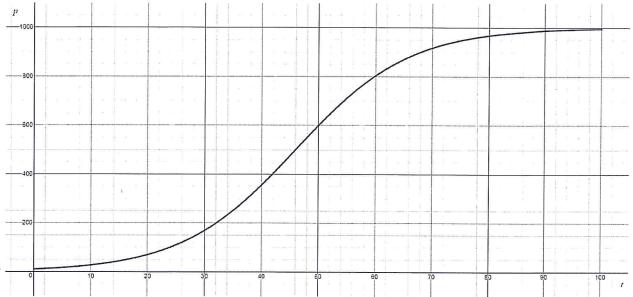

- 4) A cell phone company offers three different "pay as you go" plans.
 - Plan A charges \$0.25 per minute
 - Plan B charges \$0.99 per day plus \$0.10 per minute
 - Plan C charges a fixed rate of \$1.99 per day

Let P_A, P_B , and P_C represent the daily charges using plans A, B, and C respectively. Let m be the number of minutes per day spent on the phone.

a) Find formulas for $P_{\!\scriptscriptstyle A}, P_{\!\scriptscriptstyle B},$ and $P_{\!\scriptscriptstyle C}$.

$$P_{B} = 0.25m$$
 $P_{B} = 0.99 + 0.10m$

b) Sketch the graphs of all three functions on one coordinate system.



c) For which values of m is Plan B the cheapest?

5) What can be said about the rate of change of a linear function?

IT IS CONSTANT

6) The graph below shows the population, $\,p\,$, of a bacteria after $\,t\,$, minutes. The initial population was 10.

a) How can we tell that this function is invertible?

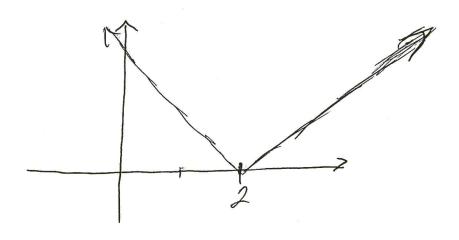
IT PASSES THE HORIZONTAL LINE TEST

EACH OUTPUT VALUE MAPS FROM CHLY

1 INPUT VALUE.

b) Give the domain and range of p^{-1}

DOMAIN: [10,1000)
RANGE: [0,100]


c) Sketch the graph of p^{-1} , with p on the horizontal axis and $t = p^{-1}$ on the vertical axis.

100 - 1000 P

- 7) Given the function f(x) = |2x 4|
 - a) Express f(x) as a piecewise defined function

$$f(x) = \begin{cases} 2x-4, & x \ge 2 \\ -(2x-4), & x < 2 \end{cases}$$

b) Sketch the graph

c) Give the domain and range of f

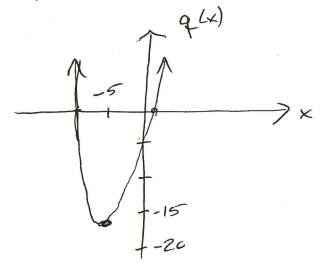
- 8) Starting with the quadratic function: $q(x) = x^2 + 8x 1$
 - a) Complete the square to put q(x) in vertex form.

$$q(x) = x^2 + 8x + 16 - 1 - 16$$

 $q(x) = (x + 4)^2 - 17$

b) Describe the function in terms of transformations of $f(x) = x^2$

c) Now solve for the zeros or x-intercepts of $\,q\,$.


$$(x+4)^{2}-17=0$$
 $(x+4)^{2}=17$
 $x+4=\pm \sqrt{17}$
 $x=-4\pm \sqrt{17}$

d) Now write q(x) in factored form.

$$q(x) = (x - (-4) + \sqrt{17})(x - (-4 - \sqrt{17}))$$

= $(x + 4 - \sqrt{17})(x + 4 + \sqrt{17})$

(Continued)

e) Sketch the graph of this quadratic function.

f) Give the domain and range of this function.

DOMAIN: XEM CANCE: QCX) > -17