Quiz 11.6:


Question:

Find a possible formula for \( f \), where \(f(1)=16 \) and \( f(2) = 128 \) if \( f \) is
a) Linear
b) Exponential
c) Power Function


5th Ed: #21


Solution:

a)
\( m = \frac{128-16}{2-1}=\frac{112}{1}=112 \)

\( f(x)-16=112(x-1) \)
\( f(x)=112x-96 \)
b)
\( f(x)=ab^x \)

\( 16=ab \)
\( a= \frac{16}{b} \)

\(128=ab^2\)
\( 128 = \frac{16}{b}b^2 \)
\( b=8 \)

\( 16=8a \)
\( a=2 \)

\( f(x)=2(8)^x\)
c)
\( f(x)=ax^b \)
\( 16=a(1)^b \)
\( a = 16 \)

\( 128= 16 (2)^b \)
\( 8 = 2^b \)
\( b=3 \)

\( f(x) = 16x^3 \)
JCCC
JCCC