The function \(f\) could not be linear because the rate of change is not constant.
\( \frac{5.20-5.50}{50-25}=\frac{-.30}{25}=-.012 ^\circ \mbox{C}/ \mbox{m} \)
\( \frac{5.10-5.20}{75-50}=\frac{-.10}{25}=-.004 ^\circ \mbox{C}/ \mbox{m} \)
\( \frac{5.10-5.10}{100-75}=\frac{0}{25}= 0 ^\circ \mbox{C}/ \mbox{m} \)
etc.
Once we reach \(d=150\), the rate of change does become constant though,
\( \frac{5.75-5.50}{175-150}=\frac{6.00-5.75}{200-175}=\frac{6.25-6.00}{225-200}= \cdots = \frac{.25}{25}=.01^\circ \mbox{C}/ \mbox{m} \)