
Section 1.2 – Rates of Change

Preliminary Example. The table to the right shows
the temperature, T, in Tucson, Arizona t hours after mid-
night.

Question. When does the temperature decrease the
fastest: between midnight and 3 a.m. or between 3 a.m.
and 4 a.m.?

t (hours after midnight) 0 3 4
T (temp. in ◦F) 85 76 70

Even though the temperature drops more between midnight and 3 a.m. than it does between 3 a.m.

and 4 a.m., the temperature decreases fastest between 3 a.m. and 4 a.m., as the calculations

below demonstrate:

Interval ∆T ∆t
∆T

∆t

0 ≤ t ≤ 3 −9◦F 3 hours
−9

3
= −3◦F per hour

3 ≤ t ≤ 4 −6◦F 1 hour
−6

1
= −6◦F per hour

Thus, the temperature decreases at an average rate of only 3◦F per hour between midnight and 3

a.m., but it decreases at an average rate of 6◦F per hour between 3 and 4 a.m.

Graphical Interpretation of Rate of Change

Definition. The average rate of change, or just rate of change of Q with respect to t is given by

Change in Q

Change in t
=

∆Q

∆t
.

� �
Alternate Formula for Rate of Change: The average rate of change of a function Q = f(t) on the
interval a ≤ t ≤ b is given by the following formula:

f(b)− f(a)

b− a

Note: Graphically, the average rate of change given by the above formula is just the slope of

the line segment in the above diagram.
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Examples and Exercises

1. Let f(x) = 4− x2. Find the average rate of change of f(x) on each of the following intervals.
(a) 0 ≤ x ≤ 2 (b) 2 ≤ x ≤ 4 (c) b ≤ x ≤ 2b

(a) We have
f(2)− f(0)

2− 0
=

(4 − 22)− (4− 02)

2
=

0− 4

2
= −2,

so the average rate of change of f is −2 over the interval 0 ≤ x ≤ 2.

(b) Similarly, we have

f(4)− f(2)

4− 2
=

(4− 42)− (4− 22)

2
=
−12− 0

2
= −6.

(c) Similarly, we have

f(2b)− f(b)

2b− b
=

(4 − (2b)2)− (4 − b2)

b
=

4− 4b2 − 4 + b2

b
=
−3b2

b
= −3b.

2. To the right, you are given a graph of the amount, Q, of
a radioactive substance remaining after t years. Only the
t-axis has been labeled. Use the graph to give a practical

interpretation of each of the three quantities that follow.
A practical interpretation is an explanation of meaning
using everyday language. � � � � � � �

	 � 
 � � � � �
 �

a. f(1)

f(1) represents the amount of the substance present, in grams, after 1 year.

b. f(3)

f(3) represents the amount of the substance present, in grams, after 3 years.

c.
f(3)− f(1)

3− 1

This is the average rate at which the substance is decaying, in grams per year, between

1 and 3 years.
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3. Two cars travel for 5 hours along Inter-
state 5. A South Dakotan in a 1983 Chevy
Caprice travels 300 miles, always at a
constant speed. A Californian in a 2009
Porsche travels 400 miles, but at varying
speeds (see graph to the right).

(a) On the axes above, sketch a graph of the distance traveled by the South Dakotan as a function of time.

(b) Compute the average velocity of each car over the 5-hour trip.

For the Chevy Caprice, we have

∆d

∆t
=

300− 0

5− 0
=

300 miles

5 hours
= 60 miles per hour,

so the Chevy Caprice has an average velocity of 60 miles per hour. For the Porsche, we

have
∆d

∆t
=

400− 0

5− 0
=

400 miles

5 hours
= 80 miles per hour,

so the Porsche has an average velocity of 80 miles per hour.

(c) Does the Californian drive faster than the South Dakotan over the entire 5 hour interval? Justify your
answer!

No. For example, the Californian has a velocity of 0 between t = 2 hours and t = 2.25
hours, because the slope of the graph corresponding to the Porsche is 0 on this time

interval.
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