Definition. If x is a positive number, then 1. $\log x$ is the power of 10 that gives x. 2. $\ln x$ is the power of e that gives x. In other words, $y = \log x$ means that $10^y = x$. $y = \ln x$ means that $e^y = x$.

Example 1. Calculate the following, exactly if possible.

 (a) $\log 100 = 2$ (since $10^2 = 100$)
 (c) $\ln e = 1$ (since $e^1 = e$)
 (e) $\log 5 \approx 0.69897$ (using a calculator)

 (b) $\log 0.1 = -1$ (since $10^{-1} = 0.1$)
 (d) $\ln(e^2) = 2$

Facts about Logarithms.	
1. (a) $\log(10^x) = x$	$\ln(\mathrm{e}^x) = x$
(b) $10^{\log x} = x$	$\mathrm{e}^{\ln x} = x$
2. (a) $\log(ab) = \log a + \log b$	$\ln(ab) = \ln a + \ln b$
(b) $\log(\frac{a}{b}) = \log a - \log b$	$\ln(\frac{a}{b}) = \ln a - \ln b$
(c) $\log(b^t) = t \log b$	$\ln(b^t) = t \ln b$
3. (a) $\log 1 = 0$	$\ln 1 = 0$
(b) $\log 10 = 1$	$\ln e = 1$

**<u>Caution</u>!! $\log(ab^t)$ does <u>not</u> equal $t \log(ab)$.

Example 2. Solve each of the following equations for x.

(a) $5 \cdot 4^x = 25$ (b) $5x^4 = 25$ (c) $x^4 = 25$ (c)

Examples and Exercises -

1. Solve each of the following equations for x.

(a)
$$5 \cdot 3^x = 2 \cdot 7^x$$

We have
 $5 \cdot 3^x = 2 \cdot 7^x$
 $\Rightarrow \ln(5 \cdot 3^x) = \ln(2 \cdot 7^x)$
 $\Rightarrow \ln5 + \ln 3^x = \ln 2 + \ln 7^x$
 $\Rightarrow \ln5 + \ln 3^x = \ln 2 + \ln 7$
 $\Rightarrow x \ln 3 - x \ln 7 = \ln 2 - \ln 5$
 $\Rightarrow x(\ln 3 - \ln 7) = \ln 2 - \ln 5$,
 $\Rightarrow x(\ln 3 - \ln 7) = \ln 2 - \ln 5$,
 $\Rightarrow x(\ln 3 - \ln 7) = \ln 2 - \ln 5$,
 $\Rightarrow x(\ln 3 - \ln 7) = \ln 2 - \ln 5$,
 $\Rightarrow x(\ln 3 - \ln 7)$
(c) $e^{4x+1} = 20$
We have
 $10e^{4x+1} = 20$
 $\Rightarrow e^{4x+1} = 21$
 $\Rightarrow \ln(e^{4x+1}) = \ln 2$
 $\Rightarrow 4x + 1 = \ln 2$
 $\Rightarrow 4x + 1 = \ln 2$
 $\Rightarrow 4x = \ln 2 - 1$,
so our answer is $x = \frac{\ln 2 - 1}{4}$.
(c) $a \cdot b^t = c \cdot d^{2t}$
We have
 $a \cdot b^t = c \cdot d^{2t}$
We have
 $a \cdot b^t = c \cdot d^{2t}$
 $\Rightarrow \ln a + \ln(b^t) = \ln c + \ln(a^{2t})$
 $\Rightarrow \ln a + \ln(b^t) = \ln c - \ln a$
 $\Rightarrow t(\ln b - 2\ln d) = \ln c - \ln a$,
so our answer is $t = \frac{\ln c - \ln a}{\ln b - 2\ln d}$.

Developed by Jerry Morris

 $\implies x^9 = 2$ $\implies (x^9)^{1/9} = 2^{1/9} \\ \implies x = 2^{1/9},$

is $x = 2^{1/9}$, or $\sqrt[9]{2}$.

 $\implies 2e^{2x} = 1$ $\implies e^{2x} = \frac{1}{2}$

 $\implies \ln(e^{2x}) = \ln\left(\frac{1}{2}\right)$

 $\implies 2x = \ln\left(\frac{1}{2}\right),$

 $10 \implies e^{\ln(x+5)} = e^{10}$

 $\implies \qquad x+5 = e^{10}$ $\implies \qquad x = e^{10} - 5,$

is $x = \frac{\ln(1/2)}{2}$.

is $x = e^{10} - 5$.

2. Simplify each of the following expressions.

(a) $\log(2A) + \log(B) - \log(AB)$ (b) $\ln(ab^t) - \ln((ab)^t) - \ln a$

(a) We have

$$\log(2A) + \log(B) - \log(AB) = \log(2AB) - \log(AB) = \log\left(\frac{2AB}{AB}\right) = \log 2,$$

so our final answer is $\log 2$.

(b) We have

$$\ln(ab^{t}) - \ln((ab)^{t}) - \ln a = \ln a + \ln(b^{t}) - t\ln(ab) - \ln a = \ln(b^{t}) - t(\ln a + \ln b)$$
$$= t\ln b - t\ln a - t\ln b$$
$$= -t\ln a,$$

```
so our final answer is -t \ln a.
```

- 3. Decide whether each of the following statements are true or false.
 - (a) $\ln(x+y) = \ln x + \ln y$

False. To illustrate this, let x = 1 and y = 1. Then

 $\ln(x+y) = \ln(1+1) = \ln 2$ $\ln x + \ln y = \ln 1 + \ln 1 = 0,$

so the statement is therefore false because $\ln 2 \neq 0$.

(b) $\ln(x+y) = (\ln x)(\ln y)$

False. To illustrate this, let x = 1 and y = 1. Then

 $\ln(x+y) = \ln(1+1) = \ln 2$ $(\ln x)(\ln y) = (\ln 1)(\ln 1) = 0,$

```
so the statement is false because \ln 2 \neq 0.
```

(c) $\ln(ab^2) = \ln a + 2 \ln b$

This statement is true because, using properties of logs, we have

 $\ln(ab^2) = \ln a + \ln(b^2) = \ln a + 2\ln b.$

(d) $\ln(ab^x) = \ln a + x \ln b$

This statement is true because, using properties of logs, we have

$$\ln(ab^x) = \ln a + \ln(b^x) = \ln a + x \ln b.$$

(e) $\ln(1/a) = -\ln a$

This statement is true, because, using properties of logs, we have

 $\ln(1/a) = \ln 1 - \ln a = 0 - \ln a = -\ln a.$

Section 5.2 – Logarithms and Exponential Models

Review: Two ways of wr	ting exponential functions:				
(1) $Q = ab^t$	(2) $Q = a e^{kt}$				
	a = initial amount				
	b~=~1+r, where r = growth or decay rate				
	k = continuous growth or decay rate				

Example 1. Fill in the gaps in the chart below, assuming that t is measured in years:

Form	nula	Growth or Decay Rate			
$Q = ab^t$	$Q = a e^{kt}$	Per Year	Continuous Per Year		
$Q = 6(0.9608)^t$	$Q = 6\mathrm{e}^{-0.04t}$	-3.92%	-4%		
$Q = 5(1.2)^t$	$Q = 5\mathrm{e}^{0.1823t}$	20%	18.23%		
$Q = 10(0.91)^t$	$Q = 10e^{-0.0943t}$	-9%	-9.43%		

(A) We have

$$Q = 6e^{-0.04t} (k = -0.04)$$

= $6(e^{-0.04})^t$
 $\approx 6(0.9608)^t (since e^{-0.04} \approx 0.9608)$

Thus, 1 + r = b = 0.9608, so r = 0.9608 - 1 = -0.0392.

(B) We have

$$Q = 5(1.2)^t \qquad (1+r=1.2 \implies r=0.2)$$
$$= 5(e^{\ln 1.2})^t$$
$$\approx 5e^{0.1823t},$$

so k = 0.1823.

(C) We have

$$Q = 10(0.91)^t \qquad (1 + r = 0.91 \implies r = -0.09)$$

= 10(e^{ln 0.91})^t
\$\approx 10e^{-0.0943t}\$,

so k = -0.0943.

Example 2. The population of a bacteria colony starts at 100 and grows by 30% per hour.

(a) Find a formula for the number of bacteria, P, after t hours.

Since P is an exponential function of t, we know that

$$P = ab^t$$
.

We are also given that the starting number of bacteria is a=30, and the hourly growth rate is 30%, which means that r=0.3. Therefore,

$$b = 1 + r = 1.3,$$

and our final answer is $P = 100(1.3)^t$.

(b) What is the doubling time for this population; that is, how long does it take the population to double in size?

Here, we are being asked to solve for t when $P=200, \, {\rm which}$ is double the starting population. We have

$$P = 200 \implies 200 = 100(1.3)^t \implies 2 = (1.3)^t$$
$$\implies \ln 2 = t \ln 1.3$$
$$\implies \frac{\ln 2}{\ln 1.3} = t,$$

so the doubling time is $t = (\ln 2)/(\ln 1.3) \approx 2.64$ hours.

(c) What is the continuous growth rate of the colony?

We have

$$P = 100(1.3)^t \implies P = 100(e^{\ln 1.3})^t \implies P \approx 100e^{0.2624t},$$

so k = 0.2624. Therefore, the continuous growth rate of the colony is 26.24%.

Definition. The half-life of a radioactive substance is the amount of time that it takes for half of a given sample to decay.

Example 3. The half-life of a Twinkie is 14 days.

(a) Find a formula for the amount of Twinkie left after t days.

Let Q be the amount of Twinkie left, in grams, and note that since Q is an exponential function of $t,\,{\rm we}$ have

 $Q = ab^t$.

Since the half-life is 14 days, and the initial amount of Twinkie is given by the constant a, we know that Q = (1/2)a when t = 14. Substituting these two values into the above equation, we obtain

$$Q = ab^t \implies \frac{1}{2}a = ab^{14} \implies \frac{1}{2} = b^{14} \quad (after dividing both sides by a)$$
$$\implies (0.5)^{1/14} = b,$$

so $b = (0.5)^{1/14} \approx 0.9517$. Therefore, our final answer is $Q = a((0.5)^{1/14})^t = a(0.5)^{t/14}$, or $Q \approx a(0.9517)^t$.

(b) Find the daily decay rate of the Twinkie.

Since $Q \approx a (0.9514)^t$ from part (a), we see have

 $1 + r = b = 0.9514 \implies r = 0.9514 - 1 = -0.0483,$

so the daily decay rate is 4.83%.

Examples and Exercises _

- 1. Scientists observing owl and hawk populations collect the following data. Their initial count for the owl population is 245 owls, and the population grows by 3% per year. They initially observe 63 hawks, and this population doubles every 10 years.
 - (a) Find formulas for the size of the population of owls and hawks as functions of time.

Let $P_1 = ab^t$ represent the owl population after t years. Since we are given that the starting population of owls is a = 245 and that the annual growth rate is r = 0.03, we have b = 1 + r = 1.03. Therefore, our formula for the owl population is

$$P_1 = 245(1.03)^t$$
.

Now, let $P_2 = cd^t$ represent the hawk population after t years. This time, the initial population is c = 63, and since the population doubles every 10 years, we know that $P_2 = 126$ when t = 10. Therefore, we have

$$P_2 = cd^t \implies 126 = 63 \cdot d^{10} \implies 2 = d^{10}$$
$$\implies 2^{1/10} = d$$

so our formula for the hawk population is

 $P_2 = 63(2^{1/10})^t = 63 \cdot 2^{t/10}, \qquad \text{or} \qquad P_2 = 63(1.0718)^t.$

(b) When will the populations be equal?

We have

$$P_{1} = P_{2} \implies 245(1.03)^{t} = 63 \cdot 2^{t/10}$$

$$\implies \ln(245(1.03)^{t}) = \ln(63 \cdot 2^{t/10})$$

$$\implies \ln 245 + t \ln 1.03 = \ln 63 + (t/10) \ln 2$$

$$\implies t \ln 1.03 - 0.1t \ln 2 = \ln 63 - \ln 245$$

$$\implies t(\ln 1.03 - 0.1 \ln 2) = \ln 63 - \ln 245,$$

so $t = \frac{\ln 63 - \ln 245}{\ln 1.03 - 0.1 \ln 2} \approx 34.2$. Therefore, the populations will be equal after about 34.2 years.

- 2. Find the half-lives of each of the following substances.
 - (a) Tritium, which decays at an annual rate (b) Vikinium, which decays at a continuous rate of 10% per week. of 5.471% per year. Since we are given that Since we are given r = -0.05471, we have b = 1 + r =that k = -0.10, we have $Q = a \mathrm{e}^{-0.1t}$, where Q is 0.94529. Therefore, $Q = a(0.94529)^t$ is the amount of Tritium left the amount of Vikinium after t years, where a is the left after t weeks, and ainitial amount present. We want is the starting amount. to find t when Q=0.5a (half the Again, we want to find tstarting amount), so we have when Q = 0.5a, so we have $0.5a = ae^{-0.1t}$ $0.5 = (0.94529)^t$ $0.5 = e^{-0.1t}$ $0.5a = a(0.94529)^t$ \implies \implies $\ln 0.5 = -0.1t$. $\ln 0.5 = t \ln 0.94529$, so the half life is so the half life is $t = (\ln 0.5)/(\ln 0.94529) \approx 12.32$ years. $t = (\ln 0.5)/(-0.1) \approx 6.93$ weeks.
- 3. If 17% of a radioactive substance decays in 5 hours, how long will it take until only 10% of a given sample of the substance remains?

Let Q represent the amount of the substance remaining after t hours, so that

$$Q = ab^t$$
.

Since 17% of the substance decays in 5 hours, this means that 83% of it will remain after 5 hours; that is, Q is 83% of the starting amount after 5 hours. In other words, we know that when t = 5, Q = 0.83a. Therefore, we have

 $\begin{array}{rcl} Q=ab^t & \Longrightarrow & 0.83a=ab^5 & \Longrightarrow & 0.83=b^5 \\ & \Longrightarrow & (0.83)^{1/5}=b, \end{array}$

so our formula becomes

$$Q = a((0.83)^{1/5})^t = a(0.83)^{t/5}.$$

We are being asked to find t when Q is 10% of the starting amount; that is, Q = 0.1a. Substituting into the above formula, we have

$$\begin{array}{rcl} 0.1a = a(0.83)^{t/5} & \Longrightarrow & 0.1 = (0.83)^{t/5} & \Longrightarrow & \ln 0.1 = \ln((0.83)^{t/5}) \\ & \implies & \ln 0.1 = (t/5) \ln 0.83 \\ & \implies & 5 \ln 0.1 = t \ln 0.83, \end{array}$$

so $t=(5\ln 0.1)/\ln 0.83\approx 61.79.$ Therefore, it takes about 61.79 hours until only 10% of the sample remains.

Section 5.3 – The Logarithmic Function

- 1. Consider the functions $f(x) = \ln x$ and $g(x) = \log x$.
 - (a) Complete the table below.

x	0.1	0.5	1	2	4	6	8	10
$\ln x$	-2.30	-0.693	0	0.693	1.386	1.792	2.079	2.303
$\log x$	-1	-0.301	0	0.301	0.602	0.778	0.903	1

(b) Plug a few very small numbers x into $\ln x$ and $\log x$ (like 0.01, 0.001, etc.) What happens to the output values of each function?

$\ln(0.01)$	=	-4.605	$\log(0.01)$	=	-2
$\ln(0.001)$	=	-6.908	$\log(0.001)$	=	-3
$\ln(0.0001)$	=	-9.21034	$\log(0.0001)$	=	-4

It appears that the output values are becoming more and more negative for both functions. It is clear from the pattern that $\log x$ approaches $-\infty$ as x gets closer and closer to 0. In fact, the same behavior is true for $\ln x$ since $\ln(e^{-1}) = -1$, $\ln(e^{-2}) = -2$, $\ln(e^{-3}) = -3$, etc.

(c) If you plug in x = 0 or negative numbers for x, are $\ln x$ and $\log x$ defined? Explain.

No, because there is no power of 10 (or of ${\rm e}$) that gives 0 or a negative number.

(d) What is the domain of $f(x) = \ln x$? What is the domain of $g(x) = \log x$?

```
The domain of both functions is \{x : x > 0\}.
```

(e) Sketch a graph of $f(x) = \ln x$ below, choosing a reasonable scale on the x and y axes. Does f(x) have any vertical asymptotes? Any horizontal asymptotes?

f has a vertical asymptote at x = 0 but no horizontal asymptote. Note that it does not have a horizontal asymptote because $\ln x$ approaches ∞ as x approaches ∞ : $\ln(e) = 1$, $\ln(e^2) = 2$, $\ln(e^3) = 3$, etc.

- 2. What is the domain of the following four functions?
 - (a) $y = \ln(x^2)$
 - (b) $y = (\ln x)^2$
 - (c) $y = \ln(\ln x)$
 - (d) $y = \ln(x 3)$
 - (a) In order for $\ln(x^2)$ to be defined, we need $x^2 > 0$. Since any number squared is positive (except 0), the domain is $\{x : x \neq 0\}$; that is, all real numbers except 0.
 - (b) Here, the variable x is being substituted into $\ln x$, so we must have x > 0. Next, since any number can be squared, there are no further restrictions on x, so the domain is $\{x : x > 0\}$.
 - (c) In order for $\ln x$, the inside function, to be defined, we need x > 0. On the other hand, in order for $\ln(\ln x)$ to be defined, we need $\ln x > 0$. Therefore, since $\ln x$ is the power of e needed to get x, $\ln x > 0$ means that x > 1. Thus, we need x > 0 and x > 1 to both be true, so the domain is $\{x : x > 1\}$.
 - (d) In order for $\ln(x-3)$ to be defined, we need x-3>0, which means that x>3. Therefore, the domain is $\{x:x>3\}$.
- 3. Consider the exponential functions $f(x) = e^x$ and $g(x) = e^{-x}$. What are the domains of these two functions? Do they have any horizontal asymptotes? any vertical asymptotes?

Since e^x and e^{-x} can be calculated for any value of x, the domain of both f and g is all real numbers. Both functions have a horizontal asymptote at y = 0 but no vertical asymptote.