Definition. If x is a positive number, then			
1. $\log x$ is			
2. $\ln x$ is			
In other words,			
$y = \log x$	means that		
$y = \ln x$	means that		

 $Example \ 1. \ Calculate \ the \ following, \ exactly \ if \ possible.$

(a) log 100	(c) ln e	(e) $\log 5$
(b) log 0.1	(d) $\ln(e^2)$	

Facts about Logarithms.			
1.	(a) $\log(10^x) =$	$\ln(e^x) =$	
	(b) $10^{\log x} =$	$e^{\ln x} =$	
2.	(a) $\log(ab) =$	$\ln(ab) =$	
	(b) $\log(\frac{a}{b}) =$	$\ln(\frac{a}{b}) =$	
	(c) $\log(b^t) =$	$\ln(b^t) =$	
3.	(a) $\log 1 =$	$\ln 1 =$	
	(b) $\log 10 =$	$\ln e =$	

Example 2. Solve each of the following equations for x.

(a) $5 \cdot 4^x = 25$

(b) $5x^4 = 25$

Examples and Exercises ____

1. Solve each of the following equations for x.

(a)
$$5 \cdot 3^x = 2 \cdot 7^x$$
 (d) $5x^9 = 10$

(b) $10e^{4x+1} = 20$

(e) $e^{2x} + e^{2x} = 1$

(c) $a \cdot b^t = c \cdot d^{2t}$

(f) $\ln(x+5) = 10$

- 2. Simplify each of the following expressions.
 - (a) $\log(2A) + \log(B) \log(AB)$

(b)
$$\ln(ab^t) - \ln((ab)^t) - \ln a$$

- 3. Decide whether each of the following statements are true or false.
 - (a) $\ln(x+y) = \ln x + \ln y$

(b) $\ln(x+y) = (\ln x)(\ln y)$

(c) $\ln(ab^2) = \ln a + 2\ln b$

(d) $\ln(ab^x) = \ln a + x \ln b$

(e) $\ln(1/a) = -\ln a$

Section 5.2 – Logarithms and Exponential Models

$\ensuremath{\mathbf{Review:}}$ Two ways of writing exponential functions:	
(1) $Q = ab^t$	(2) $Q = a \mathrm{e}^{kt}$

Example 1. Fill in the gaps in the chart below, assuming that t is measured in years:

Form	nula	Growth or Decay Rate			
$Q = ab^t$	$Q = a \mathrm{e}^{kt}$	Per Year	Continuous Per Year		
	$Q = 6e^{-0.04t}$				
$Q = 5(1.2)^t$					
$Q = 10(0.91)^t$					

Example 2. The population of a bacteria colony starts at 100 and grows by 30% per hour.

(a) Find a formula for the number of bacteria, P, after t hours.

(b) What is the doubling time for this population; that is, how long does it take the population to double in size?

(c) What is the continuous growth rate of the colony?

 $\mathbf{Definition.}$ The half-life of a radioactive substance is the amount of time that it takes for

Example 3. The half-life of a Twinkie is 14 days.

(a) Find a formula for the amount of Twinkie left after t days.

(b) Find the daily decay rate of the Twinkie.

Examples and Exercises

- 1. Scientists observing owl and hawk populations collect the following data. Their initial count for the owl population is 245 owls, and the population grows by 3% per year. They initially observe 63 hawks, and this population doubles every 10 years.
 - (a) Find formulas for the size of the population of owls and hawks as functions of time.

(b) When will the populations be equal?

- 2. Find the half-lives of each of the following substances.
 - (a) Tritium, which decays at an annual rate of 5.471% per year.
- (b) Vikinium, which decays at a continuous rate of 10% per week.

3. If 17% of a radioactive substance decays in 5 hours, how long will it take until only 10% of a given sample of the substance remains?

Section 5.3 – The Logarithmic Function

- 1. Consider the functions $f(x) = \ln x$ and $g(x) = \log x$.
 - (a) Complete the table below.

x	0.1	0.5	1	2	4	6	8	10
$\ln x$								
$\log x$								

(b) Plug a few very small numbers x into $\ln x$ and $\log x$ (like 0.01, 0.001, etc.) What happens to the output values of each function?

(c) If you plug in x = 0 or negative numbers for x, are $\ln x$ and $\log x$ defined? Explain.

(d) What is the domain of $f(x) = \ln x$? What is the domain of $g(x) = \log x$?

(e) Sketch a graph of $f(x) = \ln x$ below, choosing a reasonable scale on the x and y axes. Does f(x) have any vertical asymptotes? Any horizontal asymptotes?

- 2. What is the domain of the following four functions?
 - (a) $y = \ln(x^2)$ (b) $y = (\ln x)^2$ (c) $y = \ln(\ln x)$ (d) $y = \ln(x - 3)$

3. Consider the exponential functions $f(x) = e^x$ and $g(x) = e^{-x}$. What are the domains of these two functions? Do they have any horizontal asymptotes? any vertical asymptotes?