
Chapter 4 Skills – Exponents

Properties of Exponents

1. anam = an+m

2.
an

am
= an−m

3. (am)n = amn

4. (ab)n = anbn

5.
(a

b

)n

=
an

bn

Caution!!

(a+ b)n does not, in general, equal an + bn! For example, (a+ b)2 = a2 + 2ab+ b2, which is not the

same as a2 + b2.

Some Definitions

(A) a0 = 1 (B) a−n =
1

an
(C) a

1

n = n

√
a (D) a

m

n = n

√
am

Example 1. Without a calculator, simplify 9−1/2 +
√
0.01.

We have

9−1/2 +
√
0.01 =

1

91/2
+

(

1

100

)1/2

=
1

91/2
+

11/2

1001/2

=
1√
9
+

√
1√
100

=
1

3
+

1

10
=

10

30
+

3

30
,

so our final answer is
13

30
.

Example 2. Simplify
√

xeye/2 + (xe)(xe)2.

We have

√

xeye/2 + (xe)(xe)2 = (xeye/2)1/2 + xex2e = (xe)1/2(ye/2)1/2 + x3e

= xe/2ye/4 + x3e.
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Example 3. Simplify both of the following: (a)
n−1a

a2
(b)

n−1a+ 1

a2

(a) We have

n−1a

a2
=

1
na

a2
=

1
n

1
· a
a2

=
1

n
· 1
a

=
1

na
,

so our answer is
1

na
.

Shortcut: Since n−1, a, and a2 are all factors of the given fraction (meaning that only

multiplication and division are involved), we can simply move them between the numerator

and denominator as long as we change the sign on the exponent:

n−1a

a2
=

a

n1a2
=

1

na2a−1
=

1

na
.

Note that we obtained the same answer that we did doing it the long way.

(b) We have

n−1a+ 1

a2
=

n−1a
1 + 1

a2
=

a
n + 1

a2
=

a
n + n

n
a2

1

=
a+ n

n
· 1
a2

=
a+ n

na2
.

Therefore, our final answer is
a+ n

na2
.
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Examples and Exercises

Directions. For problems 1-7, simplify. For problem 8, solve for x. You may need extra paper for your calculations.

1.
(xy3)2

x0y5

(xy3)2

x0y5
=

x2(y3)2

1 · y5

=
x2y6

y5

= x2y

2.
(AB)4

A−1B−2

(AB)4

A−1B−2
=

A4B4

A−1B−2

= A4+1B4+2

= A5B6

3.
a3b−1

√
a5/2

a3b−1

√
a5/2

=
a3b−1

(a5/2)1/2

=
a3

ba5/4

=
a12/4

ba5/4

=
a7/4

b

4. 2b−1(b2 + b)− 2

2b−1(b2 + b)− 2 = 2b−1+2 + 2b−1+1 − 2

= 2b1 + 2b0 − 2

= 2b+ 2− 2

= 2b

5.
2M +M−1

1 + 2M−2

2M +M−1

1 + 2M−2
=

2M + 1
M

1 + 2
M2

=
2M2

M + 1
M

M2

M2 + 2
M2

=
2M2+1

M
M2+2
M2

=
2M2 + 1

M
· M2

M2 + 2

=
M2(2M2 + 1)

M(M2 + 2)

=
2M3 +M

M2 + 2

6. 3 3

√

t3 + 7(t9)1/3

3 3

√

t3 + 7(t9)1/3 = 3
3

√

t3 + 7t3 = 3
3
√
8t3

= 3(8)1/3(t3)1/3

= 3 · 2 · t
= 6t

7.
2km3 + k2m

km−1

2km3 + k2m

km−1
=

km(2m2 + k)

km−1
= m1−(−1)(2m2 + k)

= m2(2m2 + k)

= 2m4 + km2

8. 81x = 3

81x = 3 =⇒ (34)x = 3 =⇒ 34x = 31

=⇒ 4x = 1

=⇒ x =
1

4
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Sections 4.1-4.3 – Exponential Functions

Example 1. The population of a rapidly-growing country starts at 5 million and increases by 10% each year.
Complete the table below:

t (years) P, population ∆P, increase
(in millions) in population (mil)

0
5

1
5.5 0.5

2
6.05 0.55

3
6.655 0.605

4
7.3205 0.6655

Year 1: P = 5 + 5 · (0.1) = 5.5 ←− 5(1.1)

Year 2: P = 5.5 + 5.5(0.1)

= 5(1.1) + 5(1.1)(0.1) = 6.05 ←− 5(1.1)2

Year 3: P = 6.05 + 6.05(0.1)

= 5(1.1)2 + 5(1.1)2(0.1) = 6.655 ←− 5(1.1)3

Definition. An exponential function Q = f(t) has the formula f(t) = abt, b > 0,

where

a = initial value of Q

b = growth factor (b > 1 gives growth, 0 < b < 1 gives decay)

Note: b = 1 + r, where r is the decimal representation of the percent rate of change.

Example 2.

Description Growth Factor and Formula

The population, P, of ants in your
kitchen starts at 10 and increases
by 5% per day.

r = 0.05, so b = 1 + r = 1.05.
Therefore, P = 10(1.05)t.

The value, V, of a 1982 Chevy
Caprice starts at $10000 and de-
creases by 8% per year.

r = −0.08, so b = 1 + r = 0.92.
Therefore, V = 10000(0.92)t.

The air pressure, A, starts at
960 millibars at sea level

(h = 0) and decreases by 20%
per mile increase in elevation.

A = 960(0.8)h
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Example 3. Analyze the functions f and g below. Which is linear? Which is exponential? Give a formula for
each function.

x 5 10 15 20 25
f(x) 10 17 24 31 38
g(x) 100 115 132.25 152.09 174.9

First, for the function f, we calculate the change in f(x) over each interval (see table below).

Note that f(x) changes by 7 for each change of 5 in the value of x; that is, the difference

between successive output values is constant. Therefore, f is a linear function.

x 5 10 15 20 25

f(x) 10 17 24 31 38

∆f(x) 7 7 7 7

Now, we calculate the change in g(x) over each interval (see table below). Note that the change

in g(x) varies over each interval of length 5, and so g is not a linear function.

x 5 10 15 20 25

g(x) 100 115 132.25 152.09 174.9

∆g(x) 15 17.25 19.84 22.81

However, note that ratios of successive output values are constant for g:

115

100
= 1.15,

132.25

115
= 1.15,

152.09

132.25
= 1.15, . . .

Since this behavior is consistent with the behavior of the exponential function from Example 1,

we will attempt to find a formula for an exponential function that fits g.

Given: g(x) = abx, g(5) = 100, g(10) = 115

Using the given information above, we have

g(5) = 100
g(10) = 115

=⇒ ab5 = 100
ab10 = 115

=⇒ 115

100
=

ab10

ab5

=⇒ 1.15 = b5

=⇒ b = (1.15)1/5 ≈ 1.028.

Therefore, we have

100 = ab5 =⇒ a =
100

b5
=

100

1.15
≈ 86.96,

and our final answer is g(x) ≈ 86.96((1.15)1/5)x = 86.96(1.15)x/5, which can also be written as

g(x) ≈ 86.96(1.028)x.
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Comparison of Linear and Exponential Functions. If y = f(x) is given as a table of values,
and if the x-values are equally spaced, then

1. f is linear if the difference of successive y-values is constant.

2. f is exponential if the ratio of successive y-values is constant.

Example 4.

Below are the graphs of Q = 150(1.2)t, Q = 50(1.2)t,
and Q = 100(1.2)t. Match each formula to the correct
graph.

Q=150H1.2Lt

Q=100H1.2Lt

Q=50H1.2Lt

Below are the graphs of Q = 50(1.2)t, Q = 50(0.6)t,
Q = 50(0.8)t, and Q = 50(1.4)t. Match each formula
to the correct graph.

Q=50H1.4Lt Q=50H1.2Lt

Q=50H0.8Lt

Q=50H0.6Lt

Observations about the graph of Q = abt:

1. a gives the y-intercept of the graph.

2. If b > 1, the function is increasing. If 0 < b < 1, the function is decreasing.

3. Exponential functions are always concave up.
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Examples and Exercises

1. Suppose we start with 100 grams of a radioactive substance that decays by 20% per year. First, complete the
table below. Then, find a formula for the amount of the substance as a function of t and sketch a graph of the
function.

t (years) 0 1 2 3 4
Q (grams) 100 80 64 51.2 40.96

Given: Q = abt

We are also given that the initial amount

of the substance is a = 100 grams, and that

the annual decay rate is 20%, so r = −0.2.
Therefore, b = 1 + r = 0.8, and our final answer

is Q = 100(0.8)t. 1 2 3 4
t HyrsL

20

40

60

80

100

Q HgramsL

2. Suppose you invest $10000 in the year 2000 and that the investment earns 4.5% interest annually.

(a) Find a formula for the value of your investment, V, as a function of time.

We are given an initial investment of a = $10000, and an annual growth rate of r = 0.045.
Therefore, b = 1 + r = 1.045, and our final answer is V = 10000(1.045)t, where t is time in

years since the investment was made.

(b) What will the investment be worth in 2010? in 2020? in 2030?

We have

f(10) = 10000(1.045)10 ≈ $15529.69

f(20) = 10000(1.045)20 ≈ $24117.14

f(30) = 10000(1.045)30 ≈ $37453.18

Therefore, the investment will be worth $15529.69 in 2010, $24117.14 in 2020, and

$37453.18 in 2030.
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3. The populations of the planet Vulcan and the planet Romulus are recorded in 1980 and in 1990 according to
the table below. Also, assume that the population of Vulcan is growing exponentially and that the population
of Romulus is growing linearly.

Planet 1980 Population (billions) 1990 Population (billions)
Vulcan 8 12
Romulus 16 20

(a) Find two formulas; one for the population of Vulcan as a function of time and one for the population of
Romulus as a function of time. Let t = 0 denote the year 1980.

First, we find a population formula for Vulcan. Let PV be the population of Vulcan,

in billions. Then a = 8 is the initial population of Vulcan, and we are given that

PV = 12 when t = 10; therefore, we have

PV = 8 · bt =⇒ 12 = 8 · b10 =⇒ 12

8
= b10 =⇒

(

3

2

)1/10

= b,

so b = 10

√

3/2 ≈ 1.0414, and our answer is PV = 8(1.5)t/10 ≈ 8(1.0414)t.

Now, we find population formula for Romulus. Since the function for this population is

linear, we begin by finding the slope:

∆P

∆t
=

20− 16

10− 0
=

2

5

The table indicates that when t = 0, we have PR = 16, so the vertical intercept is 16.

Therefore, our final answer is PR =
2

5
t+ 16.

(b) Use your formulas to predict the population of both planets in the year 2000.

PV = 8(1.5)20/10 ≈ 18 and PR =
2

5
(20) + 16 = 24,

so the population of Vulcan will be about 18 billion and the population of Romulus will

be about 24 billion.

(c) According to your formula, in what year will the population of Vulcan reach 50 billion? Explain how you
got your answer.

Referring to the graph of PV as a function of

t to the right, it appears that PV = 50 when

t ≈ 45; therefore, Vulcan will reach a population

of 50 billion in the year 2025.

10 20 30 40 50
t

10

20

30

40

50

60
PV

(d) In what year does the population of Vulcan overtake the population of Romulus? Justify your answer
with an accurate graph and an explanation.

Referring to the graph, it appears that PV = PR

at about t = 32; therefore, Vulcan overtakes

Romulus in total population in about the year

2012.

10 20 30 40
t

10

20

30

40

P

PV

PR

8 Developed by Jerry Morris



4. Find possible formulas for each of the two functions f and g described below.

x 0 2 4 6
f(x) 2 2.5 3.125 3.90625

For the function f, we know that f(x) = abx,
and we see from the table that f(0) = 2, so

a = 2. Therefore, we have

f(2) = 2.5 =⇒ 2b2 = 2.5 =⇒ b2 = 1.25

=⇒ b =
√
1.25.

Therefore, our answer is f(x) = 2(
√
1.25)x, or

f(x) = 2(1.25)x/2.

g(x)

x

y

H1,
1
�����

3
L

H-1, 2L

Assuming that g is an exponential function, we also know that g(x) = cdx, and from the graph

we see that

f(1) = 1
3

f(−1) = 2
=⇒

ab1 = 1
3

ab−1 = 2
=⇒ ab

ab−1
=

1/3

2
=⇒ b2 =

1

6
,

which means that b =
√

1/6. Therefore, we have

ab−1 = 2 =⇒ a = 2b =⇒ a = 2
√

1/6,

and so our final answer is g(x) = 2

√

1

6

(

√

1

6

)x

, or g(x) = 2

(

1

6

)(x+1)/2

.

5. Consider the exponential graphs pictured below and the six constants a, b, c, d, p, and q.

(a) Which of these constants are definitely positive?

Since the y-intercept of each graph is above

the x-axis, we know that a, c, and p are

definitely positive. Also, since the base of

an exponential function is always positive, we

know that b, d and q are definitely positive.

Therefore, all six constants are definitely

positive.

(b) Which of these constants are definitely between 0 and 1?

First, notice that q and d are definitely

greater than 1 since y = pqx and y = cdx are

both increasing. Also, since we are not given a

x

y

x

y=pq

y=cd

y=ab

x

x

scale on the y-axis, we cannot determine whether or not p, c, and a are between 0 and 1

or greater than 1. Finally, because the graph of y = abx is decreasing, b is definitely

between 0 and 1. Therefore, we conclude that b is the only constant that is definitely

between 0 and 1.

(c) Which two of these constants are definitely equal?

a and c are definitely equal because y = cdx and y = abx have the same y-intercept.

(d) Which one of the following pairs of constants could be equal?

a and p b and d b and q d and q

a and p cannot be equal because the y-intercepts of y = abx and y = pqx are not the

same. b and d cannot be equal because y = cdx is increasing and y = abx is decreasing.

Similarly, b and q cannot be equal. Therefore, d and q are the only constants from the

above list that could be equal.
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Section 4.5 – Continuous Growth and the Number e

Preliminary Example. At the In-Your-Dreams Bank of America, all investments earn 100% interest
annually. Suppose that you invest $1000 at a time that we will call month 0. Fill in the blanks below to compare
what your investment will be worth 1 year later using various methods of interest compounding.

Month Compounded Compounded Compounded
1 Time 2 Times 4 Times

0 $1000 $1000 $1000

1
2

3 $1250
4
5

6 $1500 $1562.50
7

8
9 $1953.13

10
11

12 $2000 $2250 $2441.41

↑ ↑ ↑
1000(1 + 1)1 1000(1 + 1

2)
2 1000(1 + 1

4)
4

• After 1 year with n compoundings, we will have 1000(1 + 1
n )

n dollars in our account.

• Continuous compounding means that we let n approach infinity in the above process. When we

do this, we obtain $1000e ≈ $2718.28 as our final balance after twelve months, where

e = 2.7182818 . . . .

Alternative Formula for Exponential Functions. Given an exponential function Q = abt, it is possible
to rewrite Q as follows:

Q = aekt

The constant k is then called the continuous growth rate of Q.

Notes:
• If k > 0, then Q is increasing.

• If k < 0, then Q is decreasing.
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Exercise Suppose that the population of a town starts at 5000 and grows at a continuous rate of 2% per year.

(a) Write a formula for the population of the town as a function of time, in years, after the starting point.

We are given a starting population of a = 5000 and a continuous growth rate of k = 0.02.
Therefore, our final answer is

P = 5000e0.02t.

(b) What will the population of the town be after 10 years?

Letting t = 10, we have

t = 10 =⇒ P = 5000e0.02(10) = 5000e0.2 ≈ 6107,

so the population is about 6107 people.

(c) By what percentage does the population of the town grow each year?

For this question, we wish to find the value of r, the annual growth rate of the population.

We can do this by converting the formula for P from part (a) into the form P = abt. We have

P = 5000e0.02t = 5000(e0.02)t (by properties of exponents)

≈ 5000(1.0202)t,

so 1 + r = b ≈ 1.0202, meaning that r ≈ 0.0202. Therefore, we conclude that the town grows by

about 2.02% per year.
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